skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bashiru, Mujeebat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications. 
    more » « less
  2. Herein, an inexpensive commercially available sensor is presented for the detection of 4-nitrophenol (4NP) pollutant. Sodium fluorescein (NaFl) is used as a sensor to detect trace amounts of 4NP in acetonitrile (MeCN). The photophysical properties of NaFl were studied in two different solvents, MeCN (aprotic) and water (protic), with varying concentrations of different nitroaromatics using UV-visible absorption and fluorescence spectrophotometry. In an aqueous medium, photophysical properties of NaFl did not change in the presence of nitroaromatics. However, examination of the photodynamics in MeCN demonstrated that NaFl is extremely sensitive to 4NP (limit of detection: 0.29 µg/mL). This extreme specificity of NaFl towards 4NP when dissolved in MeCN, as compared to other nitroaromatics, is attributed to hydrogen bonding of 4NP with NaFl in the absence of water, resulting in both static and dynamic quenching processes. Thus, NaFl is demonstrated as a simple, inexpensive, sensitive, and robust optical turn off sensor for 4NP. 
    more » « less